Cardiogenic oscillation phase relationships during single-breath tests performed in microgravity.
نویسندگان
چکیده
We studied the phase relationships of the cardiogenic oscillations in the phase III portion of single-breath washouts (SBW) in normal gravity (1 G) and in sustained microgravity (microG). The SBW consisted of a vital capacity inspiration of 5% He-1.25% sulfurhexafluoride-balance O2, preceded at residual volume by a 150-ml Ar bolus. Pairs of gas signals, all of which still showed cardiogenic oscillations, were cross-correlated, and their phase difference was expressed as an angle. Phase relationships between inspired gases (e.g., He) and resident gas (n2) showed no change from 1 G (211 +/- 9 degrees) to microG (163 +/- 7 degrees). Ar bolus and He were unaltered between 1 G (173 +/- 15 degrees) and microG (211 +/- 25 degrees), showing that airway closure in microG remains in regions of high specific ventilation and suggesting that airway closure results from lung regions reaching low regional volume near residual volume. In contrast, CO2 reversed phase with He between 1 G (332 +/- 6 degrees) and microG (263 +/- 27 degrees), strongly suggesting that, in microG, areas of high ventilation are associated with high ventilation-perfusion ratio (VA/Q). This widening of the range of VA/Q in microG may explain previous measurements (G.K. Prisk, A.R. Elliott, H.J.B. Guy, J.M. Kosonen, and J.B. West J. Appl. Physiol. 79: 1290-1298, 1995) of an overall unaltered range of VA/Q in microG, despite more homogeneous distributions of both ventilation and perfusion.
منابع مشابه
Residual heterogeneity of intra- and interregional pulmonary perfusion in short-term microgravity.
We hypothesized that the perfusion heterogeneity in the human, upright lung is determined by nongravitational more than gravitational factors. Twelve and six subjects were studied during two series of parabolic flights. We used cardiogenic oscillations of O(2)/SF(6) as an indirect estimate of intraregional perfusion heterogeneity (series 1) and phase IV amplitude (P(4)) as a indirect estimate o...
متن کاملParadoxical helium and sulfur hexafluoride single-breath washouts in short-term vs. sustained microgravity.
During single-breath washouts in normal gravity (1 G), the phase III slope of sulfur hexafluoride (SF6) is steeper than that of helium (He). Two mechanisms can account for this: 1) the higher diffusivity of He enhances its homogeneous distribution; and 2) the lower diffusivity of SF6 results in a more peripheral location of the diffusion front, where airway asymmetry is larger. These mechanisms...
متن کاملHelium and sulfur hexafluoride bolus washin in short-term microgravity.
We performed single-breath washout (SBW) tests in which He and sulfur hexafluoride (SF6) were inspired throughout the vital capacity inspirations or were inhaled as discrete boluses at different points in the inspiration. Tests were performed in normal gravity (1 G) and in up to 27 s of microgravity (microG) during parabolic flight. The phase III slope of the SBW could be accurately reconstruct...
متن کاملSingle-breath washouts in a rotating stretcher.
Vital capacity single-breath washouts using 90% O2-5% He-5% SF6 as a test gas mixture were performed with subjects sitting on a stool (upright) or recumbent on a stretcher (prone, supine, lateral left, lateral right, with or without rotation at end of inhalation). On the basis of the combinations of supine and prone maneuvers, gravity-dependent contributions to N2 phase III slope and N2 phase I...
متن کاملEffect of gravity on aerosol dispersion and deposition in the human lung after periods of breath holding.
To determine the extent of the role that gravity plays in dispersion and deposition during breath holds, we performed aerosol bolus inhalations of 1-microm-diameter particles followed by breath holds of various lengths on four subjects on the ground (1G) and during short periods of microgravity (microG). Boluses of approximately 70 ml were inhaled to penetration volumes (V(p)) of 150 and 500 ml...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 1998